
 
 
 
 
 
 
 
 

Module 
10 

 

Coding and Testing 
Version 2 CSE IIT, Kharagpur 

 



 
 
 
 
 
 
 
 

Lesson 
25 

 

White-Box Testing 
Version 2 CSE IIT, Kharagpur 

 



Specific Instructional Objectives 
At the end of this lesson the student would be able to: 
 

• In the context of white box testing strategy, differentiate between stronger 
testing and complementary testing. 

• Design statement coverage test cases for a code segment. 
• Design branch coverage test cases for a code segment. 
• Design condition coverage test cases for a code segment . 
• Design path coverage test cases for a code segment. 
• Draw control flow graph for any program. 
• Identify the linear independent paths. 
• Compute cyclomatic complexity from any control flow graph. 
• Explain data flow-based testing. 
• Explain mutation testing. 

   
White box testing 
One white-box testing strategy is said to be stronger than another strategy, if all 
types of errors detected by the first testing strategy is also detected by the 
second testing strategy, and the second testing strategy additionally detects 
some more types of errors. When two testing strategies detect errors that are 
different at least with respect to some types of errors, then they are called 
complementary. The concepts of stronger and complementary testing are 
schematically illustrated in fig. 10.2. 
 

 

 
 

Fig. 10.2: Stronger and complementary testing strategies 

Version 2 CSE IIT, Kharagpur 
 



Statement coverage 
The statement coverage strategy aims to design test cases so that every 
statement in a program is executed at least once. The principal idea governing 
the statement coverage strategy is that unless a statement is executed, it is very 
hard to determine if an error exists in that statement. Unless a statement is 
executed, it is very difficult to observe whether it causes failure due to some 
illegal memory access, wrong result computation, etc. However, executing some 
statement once and observing that it behaves properly for that input value is no 
guarantee that it will behave correctly for all input values. In the following, 
designing of test cases using the statement coverage strategy have been shown. 
 
Example: Consider the Euclid’s GCD computation algorithm: 

 
          int compute_gcd(x, y) 
             int x, y; 
           { 
               1    while (x! = y){ 

                       2         if (x>y) then 
                       3                    x= x – y; 
                       4         else  y= y – x; 
                       5   } 
                       6   return x; 

           }  
 

By choosing the test set {(x=3, y=3), (x=4, y=3), (x=3, y=4)}, we can exercise the 
program such that all statements are executed at least once. 

 
Branch coverage 
In the branch coverage-based testing strategy, test cases are designed to make 
each branch condition to assume true and false values in turn. Branch testing is 
also known as edge testing as in this testing scheme, each edge of a program’s 
control flow graph is traversed at least once. 
 
            It is obvious that branch testing guarantees statement coverage and thus 
is a stronger testing strategy compared to the statement coverage-based testing. 
For Euclid’s GCD computation algorithm , the test cases for branch coverage can 
be {(x=3, y=3), (x=3, y=2), (x=4, y=3), (x=3, y=4)}. 
 
Condition coverage 
In this structural testing, test cases are designed to make each component of a 
composite conditional expression to assume both true and false values. For 
example, in the conditional expression ((c1.and.c2).or.c3), the components c1, 
c2 and c3 are each made to assume both true and false values. Branch testing is 

Version 2 CSE IIT, Kharagpur 
 



probably the simplest condition testing strategy where only the compound 
conditions appearing in the different branch statements are made to assume the 
true and false values. Thus, condition testing is a stronger testing strategy than 
branch testing and branch testing is stronger testing strategy than the statement 
coverage-based testing. For a composite conditional expression of n 
components, for condition coverage, 2ⁿ test cases are required. Thus, for 
condition coverage, the number of test cases increases exponentially with the 
number of component conditions. Therefore, a condition coverage-based testing 
technique is practical only if n (the number of conditions) is small.   

 
Path coverage 
The path coverage-based testing strategy requires us to design test cases such 
that all linearly independent paths in the program are executed at least once. A 
linearly independent path can be defined in terms of the control flow graph (CFG) 
of a program. 

 
Control Flow Graph (CFG) 
A control flow graph describes the sequence in which the different instructions of 
a program get executed. In other words, a control flow graph describes how the 
control flows through the program. In order to draw the control flow graph of a 
program, all the statements of a program must be numbered first. The different 
numbered statements serve as nodes of the control flow graph (as shown in fig. 
10.3). An edge from one node to another node exists if the execution of the 
statement representing the first node can result in the transfer of control to the 
other node. 
 
                The CFG for any program can be easily drawn by knowing how to 
represent the sequence, selection, and iteration type of statements in the CFG. 
After all, a program is made up from these types of statements. Fig. 10.3 
summarizes how the CFG for these three types of statements can be drawn. It is 
important to note that for the iteration type of constructs such as the while 
construct, the loop condition is tested only at the beginning of the loop and 
therefore the control flow from the last statement of the loop is always to the top 
of the loop. Using these basic ideas, the CFG of Euclid’s GCD computation 
algorithm can be drawn as shown in fig. 10.4. 

 
 

Version 2 CSE IIT, Kharagpur 
 



 
 

Fig. 10.3: CFG for (a) sequence, (b) selection, and (c) iteration type of 
constructs 

 

Version 2 CSE IIT, Kharagpur 
 



 
Fig. 10.4: Control flow diagram 

 
Path 
A path through a program is a node and edge sequence from the starting node to 
a terminal node of the control flow graph of a program. There can be more than 
one terminal node in a program. Writing test cases to cover all the paths of a 
typical program is impractical. For this reason, the path-coverage testing does 
not require coverage of all paths but only coverage of linearly independent paths. 

 
Linearly independent path 
A linearly independent path is any path through the program that introduces at 
least one new edge that is not included in any other linearly independent paths. If 
a path has one new node compared to all other linearly independent paths, then 
the path is also linearly independent. This is because, any path having a new 
node automatically implies that it has a new edge. Thus, a path that is subpath of 
another path is not considered to be a linearly independent path. 
 
 

 

 

Version 2 CSE IIT, Kharagpur 
 



Control flow graph 

In order to understand the path coverage-based testing strategy, it is very much 
necessary to understand the control flow graph (CFG) of a program. Control flow 
graph (CFG) of a program has been discussed earlier. 

 
Linearly independent path 
The path-coverage testing does not require coverage of all paths but only 
coverage of linearly independent paths. Linearly independent paths have been 
discussed earlier.  

 
Cyclomatic complexity 
For more complicated programs it is not easy to determine the number of 
independent paths of the program. McCabe’s cyclomatic complexity defines an 
upper bound for the number of linearly independent paths through a program. 
Also, the McCabe’s cyclomatic complexity is very simple to compute. Thus, the 
McCabe’s cyclomatic complexity metric provides a practical way of determining 
the maximum number of linearly independent paths in a program. Though the 
McCabe’s metric does not directly identify the linearly independent paths, but it 
informs approximately how many paths to look for.   

               
There are three different ways to compute the cyclomatic complexity. The 

answers computed by the three methods are guaranteed to agree. 
 
Method 1: 
Given a control flow graph G of a program, the cyclomatic complexity V(G) 
can be computed as: 
                            V(G) = E – N + 2 
where N is the number of nodes of the control flow graph and E is the 
number of edges in the control flow graph. 
 
For the CFG of example shown in fig. 10.4, E=7 and N=6. Therefore, the 
cyclomatic complexity = 7-6+2 = 3. 
 
Method 2: 
An alternative way of computing the cyclomatic complexity of a program 
from an inspection of its control flow graph is as follows: 
 V(G) = Total number of bounded areas + 1 
In the program’s control flow graph G, any region enclosed by nodes and 
edges can be called as a bounded area. This is an easy way to determine 
the McCabe’s cyclomatic complexity. But, what if the graph G is not 

Version 2 CSE IIT, Kharagpur 
 



planar, i.e. however you draw the graph, two or more edges intersect? 
Actually, it can be shown that structured programs always yield planar 
graphs. But, presence of GOTO’s can easily add intersecting edges. 
Therefore, for non-structured programs, this way of computing the 
McCabe’s cyclomatic complexity cannot be used. 
              The number of bounded areas increases with the number of 
decision paths and loops. Therefore, the McCabe’s metric provides a 
quantitative measure of testing difficulty and the ultimate reliability. For the 
CFG example shown in fig. 10.4, from a visual examination of the CFG the 
number of bounded areas is 2. Therefore the cyclomatic complexity, 
computing with this method is also 2+1 = 3. This method provides a very 
easy way of computing the cyclomatic complexity of CFGs, just from a 
visual examination of the CFG. On the other hand, the other method of 
computing CFGs is more amenable to automation, i.e. it can be easily 
coded into a program which can be used to determine the cyclomatic 
complexities of arbitrary CFGs.  
 
Method 3: 
The cyclomatic complexity of a program can also be easily computed by 
computing the number of decision statements of the program. If N is the 
number of decision statement of a program, then the McCabe’s metric is 
equal to N+1. 
 
 

Data flow-based testing 
Data flow-based testing method selects test paths of a program according to the 
locations of the definitions and uses of different variables in a program. 

 
For a statement numbered S, let 
 
DEF(S) = {X/statement S contains a definition of X}, and 
USES(S) = {X/statement S contains a use of X} 
 

For the statement S:a=b+c;, DEF(S) = {a}. USES(S) = {b,c}. The definition of 
variable X at statement S is said to be live at statement S1, if there exists a path 
from statement S to statement S1 which does not contain any definition of X. 
 

The definition-use chain (or DU chain) of a variable X is of form [X, S, S1], 
where S and S1 are statement numbers, such that X Є DEF(S) and X Є 
USES(S1), and the definition of X in the statement S is live at statement S1. One 
simple data flow testing strategy is to require that every DU chain be covered at 
least once. Data flow testing strategies are useful for selecting test paths of a 
program containing nested if and loop statements. 
 

Version 2 CSE IIT, Kharagpur 
 



Mutation testing 
In mutation testing, the software is first tested by using an initial test suite built up 
from the different white box testing strategies. After the initial testing is complete, 
mutation testing is taken up. The idea behind mutation testing is to make few 
arbitrary changes to a program at a time. Each time the program is changed, it is 
called as a mutated program and the change effected is called as a mutant. A 
mutated program is tested against the full test suite of the program. If there exists 
at least one test case in the test suite for which a mutant gives an incorrect 
result, then the mutant is said to be dead. If a mutant remains alive even after all 
the test cases have been exhausted, the test data is enhanced to kill the mutant. 
The process of generation and killing of mutants can be automated by 
predefining a set of primitive changes that can be applied to the program. These 
primitive changes can be alterations such as changing an arithmetic operator, 
changing the value of a constant, changing a data type, etc. A major 
disadvantage of the mutation-based testing approach is that it is computationally 
very expensive, since a large number of possible mutants can be generated. 
 

Since mutation testing generates a large number of mutants and requires 
us to check each mutant with the full test suite, it is not suitable for manual 
testing. Mutation testing should be used in conjunction of some testing tool which 
would run all the test cases automatically. 

Version 2 CSE IIT, Kharagpur 
 


	Coding and Testing
	White-Box Testing
	Specific Instructional Objectives
	White box testing
	Statement coverage
	Branch coverage
	Condition coverage
	Path coverage
	Control Flow Graph (CFG)
	Path
	Linearly independent path

	Control flow graph
	Linearly independent path
	Cyclomatic complexity
	Data flow-based testing
	Mutation testing



